
CHAPTER 2 Literate modelling
2.1 Acknowledgements
We’d like to acknowledge Dr. Wolfgang Emmerich of University College London,
Mr. John Quinn of British Airways for their help in the work we present in this
chapter. We initially presented the core of ideas of Literate Modelling in a paper
entitled “Literate Modeling - Capturing Business Knowledge with the UML”
[Arlow2] at the «UML»’98 conference.

2.2 Introduction
One problem you will find with UML models (and in visual models in general) is
that the valuable information captured in the model is only accessible to those who
know the visual syntax of the modelling language. In a sense, valuable information
about the business becomes encrypted in a concise, elegant modelling language that
is only accessible to an elite who are “in the know”.

But we think there is a way around this problem, and this is the topic of this chapter.

In fact, it is not just the visual syntax of UML models that creates problems. If you
need to access the information embedded in a model, you may also need to know
Business Archetypes and Patterns 88

Literate modelling

89
how to work a CASE tool to navigate that information effectively. All CASE tools
can generate reports, often in HTML format, but you may find that these reports
are hard to read and navigate, and are (at least in our experience) of little practical
use.

Also, unless you already know the general “shape” of a model, knowing precisely
where to start with either the model in a CASE tool, or with a generated report can
be difficult.

Even though you may know UML syntax and also know how to work the CASE
tool, you may still find it difficult, and often impossible, to uncover the important
business requirements and imperatives that shaped the model and give it it’s busi-
ness value.

When key information is taken out of its business context and expressed in UML or
some other abstract visual notation, it often becomes invisible. In our 1998 paper
[Arlow2] we call this the trivialisation of business requirements.

A result of trivialisation is that it is quite common for an Analyst or Designer to be
unable to describe the forces, business context and requirements that shaped a
UML model that they constructed just a few months previously.

Trivialisation of business requirements it is not unique to the UML but seems to be
a universal feature of all visual modelling languages. This is because one of the key
strengths of visual modelling, its conciseness and terseness, is also in some cases a
weakness.

When you represent important business requirements a class, relationship, method,
constraint, multiplicity or some other element on a UML diagram, the requirement
lost amidst other similar modelling elements that may have much less business sig-
nificance.

Our solution to this problem is to extend the UML model by providing a narrative
description that is accessible to many different readers, not just those “in the
know”. This is what we call a “literate model”.

We got the idea for literate modeling from our own experiences in trying to explain
complex UML Enterprise Object Models to a wide spectrum of stakeholder from
those with detailed knowledge of UML modelling to those with no knowledge at
all. We called the technique “literate modeling” as it is in some ways similar to “lit-
erate programming” as discussed in [Knuth1]. Literate programming tried to make
Business Archetypes and Patterns

Comprehensibility and accessibility of UML models
programs more comprehensible by embedding them in an explanatory narrative,
and literate modelling essentially tries to do the same thing, but for UML models.

In practice, literate programming, although a very good idea, didn’t really take off
too well. This was partly because of it’s reliance on special text processing tools
that were not widely available, and partly because programmers generally prefer to
write code, rather than narrative!

In contrast to this, literate modelling has proven to be very popular with those who
have used it. This is because a literate model not only provides a context for a UML
model that is otherwise lacking, it also helps the modeler to do his or her work.

Creating a literate model as part the process of creating a UML model will improve
the quality of your thought processes and of your modeling. You will also achieve
enhanced communication with both technical and non-technical stakeholders.

2.3 Comprehensibility and accessibility of UML
models
In this section we show you our assessment of how well different groups of people
involved in a software development project are able to access and comprehend the
various types of UML model.

We’d like to point out that this assessment is based on experiential evidence that
we have accumulated over many man-years of using the UML in various substan-
tial and mission critical projects. We first discussed these ideas in 1998 [Arlow2]
and since then we have had many letters supporting these results. We are confident
that, although subjective, this assessment is pretty accurate. However, it’s a big
world, and if you’ve had other experiences, we’d like to hear from you!

We’re going to consider two aspects of UML models, their comprehensibility and
their accessibility.

• Comprehensibility - the ability to understand the business semantics of the
model. Comprehensibility is the key to obtaining business value from UML
models, and it is often contingent on accessibility.

• Accessability - the ability to access the information contained in a UML model.
There are two components to access ability:
Business Archetypes and Patterns 90

Literate modelling

91
1. Ability to understand UMLs visual syntax.
2. Ability to drive the CASE tool to navigate around the model.

In order to make an assessment of comprehensibility and accessibility, we also
need to define who we are considering, and what it is that they are trying to com-
prehend.

If you consider stakeholders that could benefit from access to UML models, then
for the purposes of this consideration, you can divide them up into six broad cate-
gories as shown in Table 1:

TABLE 1.

These categories of people can be thought of as very broad roles within the project,
and any individual project participant may play more than one of these roles at any
point in time, or over time.

Finally, you need to consider the various types of UML diagrams (class diagram,
sequence diagram etc.), and how accessible and comprehensible these are to the
various roles.

In fact, each of the various types of UML diagram targets, and is comprehensible
to, a limited audience.

Figure 2.1 shows our estimates for the comprehensibility of the main UML arte-
facts in an analysis level model. We do not consider design models, or physical

Role Semantics Type

Non-technical manager A project management role. Needs only a very high-
level understanding of the technical aspects of the
project. In particular, they do not need to have UML
knowledge.

non-technical

User Someone who uses the delivered system. Users do not
need to be technical, but may have some knowledge of
analysis or requirements capture.

Domain expert An expert in the problem domain of the project.
Domain experts do not need to have any UML knowl-
edge.

Analyst Creator of analysis level UML models. technical

Designer Creator of design level UML models.

Programmer Creator of source code.
Business Archetypes and Patterns

Comprehensibility and accessibility of UML models

0

1

2

3

4

5

6

7

comprehensability
models (deployment and implementation diagrams). This is because our focus in
this book is on using literate models to convey business information. It is certainly
possible to use literate modelling at more concrete levels of abstraction, but we feel
that it’s main benefit is at the analysis level.

For each of our roles, we have rated their comprehension of the various UML arte-
facts on a scale of zero to seven. On this scale zero means virtually no comprehen-
sion seven denotes virtually complete comprehension. We arrived at these
estimates based on our private communications with many individuals performing
roughly these roles over the course of many different UML projects in many differ-
ent businesses. The chart is not (and we’re not sure it ever could be) quantitative,
but we hope that you can agree that it illustrates the trends in comprehension cor-
rectly.

FIGURE 2.1 P001

us
e

ca
se

 s
pe

ci
fic

at
io

n

us
e

ca
se

 d
ia

gr
am

ac
tiv

ity
 d

ia
gr

am

se
qu

en
ce

 d
ia

gr
am

co
lla

bo
ra

tio
n

di
ag

ra
m

cl
as

s
di

ag
ra

m

st
at

ec
ha

rt

non-technical manager

user

domain expert

analyst

designer
programmer

UML artefact

role

non-technical manager

user

domain expert

analyst

designer

programmer
Business Archetypes and Patterns 92

Literate modelling

93
In the next few sections, we’ll look at each of the UML artefacts and their compre-
hensibility in a bit more detail.

2.3.1 Use case specifications
Considering all roles, use case specifications have the highest overall comprehensi-
bility. This is because:

• They are usually written in plain English and so there is no comprehensibility
problem due to a need to know a visual syntax.

• They are often written in a word processor, as support for use case specifica-
tions in the current crop of CASE tools is generally limited to plain text. There
is no access ability problem as no CASE tool is involved.

• They are often somewhat familiar to non-OO practitioners, as they are just
descriptions of business processes from the point of view of the actor. It is quite
easy to “step inside” the use case specification and role play in order to enhance
comprehension.

Despite this high level of comprehensibility, there can still be some problems with
use case specifications:

• A use case is a description of a specific business process from the perspective
of a particular actor. As such they typically don’t give a clear picture of the
overall business context and imperatives that generate the need for the business
process in the first place.

• Use cases are often written using domain specific jargon. This means that they
can sometimes be quite incomprehensible to non-domain experts. As we dis-
cuss in [Arlow1], there are specific ways to get around this issue. Because of
this need for a certain amount of domain knowledge, the more technical
Designer and Programmer roles may have problems understanding the real
business meaning of some use case specifications.

• The business context that gives rise to a set of business requirements is not well
captured or explained by use cases or by any UML construct.

Unfortunately UML provides no formal mechanism to capture and present impor-
tant contextual information. You can’t easily embed this information in the use case
specifications themselves as the business context is generally orthogonal to any
particular use case. You can always use notes, free-text annotations to diagrams,
and constraints. This may help you to capture the contextual information in the
Business Archetypes and Patterns

Comprehensibility and accessibility of UML models
model, but in terms of the accessibility and comprehensibility of the model it
doesn’t really help.

2.3.2 Use case diagrams
You will find that find these to have similar comprehensibility to use case specifi-
cations. UML use case diagram syntax is very simple and this leads to high levels
of comprehensibility. However, the following features may cause some compre-
hensibility problems:

• use case generalization
• «extend»
• «include»

Use case generalization is not that widely used (unless the parent use case is
abstract), largely because it’s effect on use case specifications can be very complex.
See [Arlow1] for a discussion of this.

Of the other two relationships, «include» is easy to understand for anyone who has
some background in programming, and «extend» can be explained even to non-
technical users if the explanation is clear enough. Again, we refer you to our previ-
ous book [Arlow1] for simple explanations of these relationships.

Use case diagrams are semantically very weak. You may find that the real business
meaning of a use case diagram is not apparent without detailed explanation, or ref-
erence to the use case specification itself. We have therefore given them a lower
comprehensibility than Use Case Specification for the non-technical roles, Non-
Technical Manager, User and Domain Expert.

You may find that comprehensibility is lower for the technical roles, such as
Designer and Programmer, as they may not have sufficient business domain knowl-
edge to grasp the true business meaning of the use case diagram.

2.3.3 Activity diagrams
One of the nice features of activity diagrams is that you can use them for almost
anything! They can model use case flows, business processes or even the detailed
specification of a method. Because we are focusing on the analysis domain, we will
only consider two uses for activity diagrams here - modeling use case flows and
modeling business processes.
Business Archetypes and Patterns 94

Literate modelling

95
Essentially, activity diagrams are just “OO flowcharts”. Most people are familiar
with flowcharts, and so they tend to have high levels of comprehensibility. We have
positioned them on our chart as having slightly lower comprehensibility than use
case specifications and use case diagrams because there is significantly more visual
syntax to learn for activity diagrams.

In most other respects, activity diagrams exhibit similar comprehensibility across
the roles as use case diagrams and specifications. The key difference is that activity
diagrams tend to be slightly more comprehensible to the technical roles and less
comprehensible to the non-technical roles.

2.3.4 Sequence diagrams
You are now in the realm of object orientation, and comprehensibility falls sharply
for non-OO literate participants. We have found that Non Technical Managers and
Users find raw sequence diagrams very difficult to follow because they don't really
understand the details of object interaction.

Comprehension may be slightly higher for Domain Experts, as these roles often
have some exposure to object-orientation through working with Analysts.

If you adorn sequence diagrams with scripts, this will increase comprehensibility
markedly for the non-technical group. But comprehensibility is now of the script,
rather than of the visual syntax, which remains largely obscure.

Because sequence diagrams show the interaction between objects, Designers and
Programmers tend to naturally understand them. However, they might not be so
sure about the underlying business processes that drive the interactions!

2.3.5 Collaboration diagrams
Non-technical roles typically find these confusing, and unlike sequence diagrams,
there is no reasonable possibility for you to adorn them with a script to increase
their comprehensibility. We give these a very low comprehensibility for this audi-
ence although again, comprehension may be higher for the Domain Expert.

The technical roles find these diagrams both useful and comprehensible.

2.3.6 Class diagrams
For comprehensibility these require:
Business Archetypes and Patterns

Comprehensibility and accessibility of UML models
1. Some basic OO training
2. Knowledge of UML syntax
3. Ability to use the CASE tool to uncover class and relationship semantics

We have found that comprehensibility of these diagrams is typically very low for
Non Technical Managers and Users. It may be slightly higher for Domain Experts,
as these roles often have some exposure to object-orientation through working with
Analysts.

For the technical group, Analysts, Designers and Programmers, comprehensibility
is very high, although we have noticed that many programmers do not have suffi-
cient understanding of UML syntax and object oriented analysis to fully appreciate
them. Hence, you may find that the Programmers' comprehension is lower than that
of Analysts and Designers.

Analysts tend to understand the class diagram from the business perspective.

Designers often know less about the business, and their comprehension may be
more in terms of object-oriented design issues such as patterns, idioms, APIs and
technical infrastructure.

In many organizations Programmers tend to be more junior than Analysts and
Designers. As such they may know little about the business and little about good
object-oriented design principles. This leads to a lack of comprehension of many of
the key aspects of the UML model.

2.3.7 Statecharts
Statecharts are quite specialized and have a very elegant yet terse syntax that is
rarely understood by the non-technical group. On our scale, comprehensibility is
effectively zero for this group.

Generally, we have found that it is Designers, and not all Designers at that, who
have a good grasp of statecharts.

The problem is that statecharts attempt to capture a dynamic system in a static
notation. This obviously makes them quite hard to understand as it is left up to the
reader to imagine the dynamic flow between states. This can only happen if the
reader understands object interactions.
Business Archetypes and Patterns 96

Literate modelling

97
Statecharts increase in comprehensibility if they can be executed and animated in
the CASE tool. But this is still quite rare.

2.4 The problem of comprehensibility

You can see that several important issues arise from the above discussion:

1. Moving through our seven diagrams along the UML artefact axis of Figure 2.1
from use cases to statecharts, the non technical group is gradually left behind.
They lose comprehension as the diagrams become more technical and the
emphasis shifts from a focus on business requirements to a focus on the intrica-
cies of implementation

2. There is a traceability issue. The non-technical group understand the business
requirements best, but they have little comprehension of UML Sequence, Col-
laboration, Class and State diagrams. Traceability of high level requirements to
these diagrams therefore relies mainly on the fidelity of the modelling transfor-
mations, and lacks essential feedback from the non-technical group.

3. We have found that Designers and Programmers may have little understanding
of the actual business and its needs. You cannot rely on them to capture busi-
ness requirements correctly in their models and code.

4. Key business requirements are expressed as elements in UML diagrams. But
there are so many elements in a UML diagram that the important requirements
become lost. We call this process trivialisation, because key requirements are
translated into a context in which their importance is no longer apparent.

The last point, about trivialisation of requirements is very important, and we dis-
cuss it in more detail in the next section.

2.5 The trivialisation of business requirements in
visual modelling
We all know that some business requirements are more important than others. But
often, you can’t tell from a blunt statement of the requirement just how important it
is to the overall operation of the business. In order to appreciate the true importance
of a requirement, you need to see it in it’s business context, but it is precisely this
business context that is lacking in conventional UML models.
Business Archetypes and Patterns

The trivialisation of business requirements in visual modelling
In the real world, you may notice that important business requirements are often
highlighted by a certain amount of activity and ceremony - there may be papers,
working groups investigating the requirement and discussion at managerial level.
This activity is a key indicator that something is perceived to be important to the
business by those in charge.

But all of this valuable contextual information is absent from the UML model.
Although you may have a statement of a particular business requirement as part of
a UML use case, you have no formal mechanism to highlight the importance of this
requirement or to set it in its true business context.

Worse, when the requirement is expressed in a class diagram, it becomes merely a
cluster of modelling elements much like any other.

Rather than being highlighted in the UML model, essential business requirements
tend to fade into the background. This is what we mean by trivialisation.

In our paper [Arlow1] we present the following example from British Airways that
illustrates trivialisation.

The last decade has been the decade of the global airline. Globalization often
involves forming alliances so that one partner may sell seating capacity on another
partner's flight. This practice is known as codeshare.

Codeshare is good for the airline, as it extends it’s network, and it is good for pas-
sengers, as they can complete a complex journey using a set of co-operating com-
panies. It can also improve customer service. In fact, codeshare can generate new
business worth millions of pounds.

For example, a single operating flight from London, Heathrow to EuroAirport
(Basle, Mulhouse, Freiburg) on 23 July 2002 at 21:00 may have a BA flight num-
ber (BA6670), a Swiss flight number (LX371) and be operated by Swiss. It will
also have an operational flight number that is the “real” flight number as far as air
traffic control is concerned.

You can see that it is an essential business requirement for alliance partners to be
able to support codeshare in their systems. The key to this support is that each
flight must be able to have many flight numbers.

But how do you represent this key business requirement in a UML model?
Business Archetypes and Patterns 98

Literate modelling

99
From the use case perspective, it’s not entirely clear where the requirement gets
captured. There will be a use case involving a BA customer flying on a BA flight.
But it is unlikely that there will be any mention of codeshare in this use case as the
principle of codeshare is that it is meant to be transparent to the BA customer.

In the class diagram codeshare is represented as a many to many relationship
between Flight and FlightNumber as shown in Figure 2.2.

FIGURE 2.2 001

So a multimillion-pound business requirement, effecting an alliance of companies
together worth billions, is represented as a multiplicity on a UML Analysis class
diagram!

This sort of trivialisation is surprisingly common when you begin to recognize it.

2.6 Literate modelling
As you saw in the last few sections, although UML models can have a high degree
of precision and conciseness, they may be difficult to access and comprehend -
especially by non-technical people. Literate modeling provides one solution to this
problem.

Literate modelling applies of Knuth's idea of Literate Programming [Knu84] to
UML models. The approach is very simple - you interleave UML models with a
narrative text that explains the model to both the author of the model and to all the
roles discussed above.

Literate Modelling addresses all of the issues we have raised: the accessibility and
comprehensibility of the UML models and the trivialisation of business require-
ments. It does this by providing the missing business context in the form of a docu-
ment that anyone can read.

So the core idea of literate modeling is very simple - you simply extend your UML
modeling by adding new documents that we call Business Context documents that
Business Archetypes and Patterns

The business context document

UML mode
explain the model in light of the business context and forces that have shaped it.
This is illustrated in Figure 2.3.

FIGURE 2.3 P002

You can use business context documents to:

1. Explain the rationale behind the UML model in terms that business users can
understand

2. Highlight important business requirements
3. Map important business requirements to specific features of the model
4. Explain how the business requirements and context caused particular modelling

choices to be made

In our experience the literate model increases the business value of a UML model
by making it accessible and comprehensible to a very wide audience.

2.7 The business context document
In this section, we discuss how to write a business context document.

Business context documents discuss the background, general principles and con-
cepts, essential requirements and the forces that shape a specific part of the busi-

narrative
+

embedded
model

fragments

+
l Business Context

Document

= Literate
Model
Business Archetypes and Patterns 100

Literate modelling

101
ness. They consist of a narrative with embedded UML diagrams. Any description
of any part of these diagrams is always from the perspective of the business.

A good Business Context can be quite difficult to write. As the author, you need to
have quite a range of knowledge and skills. You need:

• A very sound and broad overview of the business
• Good UML modelling skills
• Good writing and communication skills

We have had very good experiences applying the techniques of Nauru-Linguistic
Programming (NLP) when writing business context documents. NLP provides a
model of communication and a set of specific communication techniques to
improve the quality of communication. A full discussion of NLP is outside the
scope of this book, and we refer you to “The Structure of Magic” [Bandler1] for
more information.

You have two options for structuring your business context document:

1. Around the things in your business
2. Around the processes in your business

Our experience is that structuring the business context document around the things
in your business (Customer, Product, Order etc.) is the best approach. This is for
the following reasons:

• Things, and their relationships to each other tend to change quite slowly. This is
particularly true if the things in question are business archetypes!

• Things tend to naturally form cohesive clusters (e.g. Customer, Product, Order)
that provide a very good focus for the business context document.

• Things support processes (and processes require things) and so things are in
some sense more fundamental than processes.

On the other hand, buisness processes tend to change quite rapidly and cut across
clusters of things. You can document important business processes as a narrative,
but you should use the more stable business context documents as the building
blocks for this narrative.

The first step in creating a business context document is to identify a suitable focus
for the document. This focus is a cohesive cluster of things that deliver value to
your business. We generally name the business context document after the key
Business Archetypes and Patterns

The business context document
thing in that cluster. For example, if you consider the Money Archetype Pattern
presented in Chapter 6, you can see that the cluster of things (archetypes in this
case) are:

• Money
• Currency
• ExchangeRate
• MoneyCalculator
• Locale
• etc.

The key thing is Money, and so in this case we call the business context document
“The Money archetype pattern”.

Each business context document has the following minimal structure:

• Business context
• A general discussion of the business context that this document describes

• Compliance to standards
• Existing standards that anyone working in this area needs to know about

• Overview
• Overview UML model showing all of the main things and relationships

• Thing
• Narrative

• Model fragment
• ...

• Thing
• Narrative

• Model fragment
• ...

• ...

We find that the Class Diagram, Use Case Diagram and Sequence Diagram are
quoted most often in the Business Context document. In rare cases, you may find it
useful to include a few State Diagrams for the more technical readers.
Business Archetypes and Patterns 102

Literate modelling

103
You can use informal diagrams wherever they enhance the text, but they should
never be a substitute for a UML diagram.

The structure shown above is not fixed, and you can add things to it or remove
things from it as you see fit. However, the core semantics of the business context
document - that it explains the model in light of the business context and forces that
have shaped it - must always be preserved.

One key advantage of the business context document is that it can begin to regular-
ize the language used in a particular business domain. To achieve this you should
highlight definitions of things and terms, as we do in the literate models presented
later in this book.

You will find that most businesses use terms quite loosely. For example, airlines
often use the term “flight” to mean four distinctly different things:

• A specific aircraft flying between an origin and a destination at a particular
point in time

• A group of aircraft flying between an origin and a destination over a period of
time

• A marketing entity that describes travel that may be realised by one or more
physical flights between an origin and a destination beginning and ending at
particular points in time

• A marketing entity that describes travel that may be realised by one or more
physical flights over a period of time

This is an example of a homonym - a single word that has a cluster of different
meanings.

The other case you will encounter is the synonym. This is where two different
terms have the same meaning. For example, many business with web sites use the
terms ‘customer’ and ‘user’ to mean the same thing.

Synonyms and homonyms are a reality of business life, yet you can (and must)
resolve them in your business context documents. You can mention synonyms and
homonyms in your narrative, explaining why you have chosen one term in prefer-
ence to another. You can also create a glossary to go with your business context
documents where there is a single entry for each preferred term with all synonyms
and homonyms listed underneath.
Business Archetypes and Patterns

Clusters of things
If business context documents had no other benefits, they would be still be worth
creating just because they introduce the possibility of regularizing business termi-
nology!

2.8 Clusters of things

The UML grouping mechanism is the package, and in a well-constructed UML
model you will find that packages contain cohesive clusters of things. This tells
you that there should be a simple relationship between the your business context
documents and the package structure of your UML model. In the simplest case,
there is one business context document per package. However, it is also quite com-
mon for a business context to describe a cluster of closely related packages such as
a package and its nested packages.

Just as there are dependencies between packages, there are corresponding depen-
dencies between business context documents. A client document will often have to
refer to a thing in a server document. You can resolve this as follows:

• You should always include the definition of the thing you are referring to in the
client document

• You should always reference the server document where the thing is covered in
detail

Replicating the same definition in different documents is clearly a bad idea from a
maintenance perspective. However, from a readability perspective it is essential
that your reader has all the information at their fingertips. Only make your reader
go off to another document if it is absolutely necessary. Word processors such as
Word or Framemaker allow you to put commonly used text, such as definitions, in
a library where you can reuse them. This reduces your maintenance overhead.

If you find that your business context documents imply a different package struc-
ture to that of your UML model, then you need to resolve this. Go back to the busi-
ness and find out what the true clustering of things is. You will find that the truth is
out there.
Business Archetypes and Patterns 104

Literate modelling

105
2.9 Business context document conventions
Always write Business context documents using the names of the things in the
UML model. In this way you tie the narrative to the UML model. These names
may (as in this book) be highlighed in a specific typeface.

Using model element names directly in the text provides a very stringent test for
the quality and comprehensibility of your model. Parts of the narrative that are
domain experts find hard to understand may indicate where you have named some-
thing poorly or even where you might be using the wrong abstraction.

Consider the following extract from the Money archetype pattern (section 6.4):

“The Money and Currency archetypes are shown in Figure 8.2.
Business Archetypes and Patterns

Business context document conventions
Figure 8.2002

Money is an amount of a specific Currency. This Currency is accepted in one or more
Locales. We’ll come back to Locale later.”

Notice the following points:

• The text refers to one or more specific UML model elements (see Figure 2.4).
• The names of all model elements are written in a special font. You can refer to

any model element on the diagram that has a name.
• Use plurals where necessary. So if you need to talk about more than one Locale,

you use the term Locales.
• Use ‘s appropriately. So, for example, you can talk about a Country’s Locale.
Business Archetypes and Patterns 106

Literate modelling

107

Currency is ac
• The text reads well and is comprehensible whether the UML model is present
or not.

The last point is very important. The text should be comprehensible whether you
can read the UML model or not. In fact, a good test of a business context document
is to cover up all the UML models and see if it is still readable. It should be!

FIGURE 2.4 P003

2.10 Readability
We encourage you to believe that boredom is always optional!

Ever wondered why some texts put you to sleep? It’s probably down to the use of
passive voice.

ceptedIn one or more locales…
Business Archetypes and Patterns

Readability
Passive voice disassociates the reader from the story line of the document and leads
to boredom and low comprehension. Dr. Richard Bandler (one of the world’s great-
est hynotists) pointed out in [Bandler1] that using the passive voice is one of the
best ways of inducing trance in a reader.

Combining passive voice with a long, rambling and ambiguous sentences can be
truly devastating! In fact, if you want to write something that no-one will ever
really read, then this is a sure-fire way to achieve that.

Our observation is that a surprising number of corporate documents are:

• Written in passive voice
• Have long, rambling ambiguous sentences
• Are never read

Our advice to you is to write the business context document as though you are talk-
ing to someone - much as we have written this book. Try to make the document as
engaging as possible. Given the subject matter you are unlikely to ever make the
New York Times best-seller list, but you will make your documents more readable
and therefore useful.

Perhaps the most important tip we could give you is simply to “tell a story”.

Your UML diagrams should always tell a story and so should your business context
documents. This story explains to the reader, in simple language, how part of the
business operates and why it operates in that way. The literate model should
explain and highlight important business things, processes and requirements.

We find that we get the best results when the Business Context document is lively,
involving, direct, provocative, precise, concise and, if possible, humorous. How-
ever, it can be difficult to incorporate humour well and you should avoid it if in
doubt.

This isn’t really the place to discuss good writing style in depth, so we refer you to
“Bugs in Writing” [Dupré1], for more information.
Business Archetypes and Patterns 108

Literate modelling

109
2.11 Use concrete examples
It’s important to make the business context documents as concrete and “real world”
as possible.

One of the best ways to do this is to include real-world examples throughout the
text. For example, if you are discussing product specification, then give a real busi-
ness example in your text.

If you are working in an alliance situation, where your literate models may also be
used by business partners, then consider giving some examples from your partners
business. We have done this several times and it is always very well-received. It
shows your partners that you have been taking their needs into consideration and it
helps to bypass the “not invented here syndrome”.

Another tactic that we find useful in business context documents is to include more
than one example in areas that are difficult. You might start with a simple example
to give the reader the general idea and then go on to a more complex example. In
one literate model we created for a global transportation company we chose the
most complex journey in their timetable and demonstrated how our UML model
could accommodate that. This gave our literate model a lot of credibility within
that business.

Apart from the credibility issue, another very good reason for choosing a difficult
example is to stress-test your UML model. We have often found that something
that works for a simple case breaks down for more complex cases. In fact, many of
the UML models you find in UML text books will only work for very simple cases.
You can greatly improve your modelling skills by providing worked examples that
illustrate how your model support complex real-world business situations.

2.12 Precision and correctness
Combining a narrative text with a UML model gives you something that is more
than the sum of it’s parts.

The reason for this is that the narrative is free to explore the entire business context
in which the UML model must operate, whilst the UML model enforces precision
Business Archetypes and Patterns

The future of literate modeling
on the narrative. We often find that a good literate model is much more detailed and
precise than either the model or the narrative would be if they stood alone.

Also, both the UML model and the narrative tend to be correct when combined
together in a literate model. This is because the UML model highlights errors in the
narrative and the narrative highlights errors in the literate model. You may be sur-
prised at how often a UML model that looks OK on paper begins to seem not so
OK when you begin to write about it!

2.13 The future of literate modeling
In the future, the most significant enhancement we can make to literate modelling
will be to define an XML schema for the business context document. This schema
will incorporate special tags containing information that links the tag contents
directly to elements in a UML model. In fact, you can do most of what you need to
do in literate modeling with only three new XML tags:

<modelElement>
<modelElementDefinition>
<umlDiagram>

For example, the tag <modelElement> might look something like this:

<modelElement pathName = nameOfElement, identifier = identifierOfElement>
someText
</modelElement>

This tag contains the path name of a model element and (optionally) its unique
identifier in the UML CASE tool. The content of the tag should be the name of the
element as used in the narrative. For example, if the path name of the element is
clearviewtraining.com::Money Archetype Pattern::Currency, then at one point in the narra-
tive, someText might be “Currency” and in another part, “Currencies”.

The <modelElementDefinition/> tag is used as follows:

<modelElementDefinition pathName = nameOfElement, identifier = identifierOfElement/>

This tag facilitates the automatic retrieval of documentation strings from the UML
model and their insertion into the literate model.
Business Archetypes and Patterns 110

Literate modelling

111
Finally, we need a tag to identify embedded UML diagrams:

<umlDiagram pathName = nameOfDiagram, identifier = identifierOfDiagram/>

This tag just refers to a specific UML diagram in the model.

They key design point of all of these tags, is that the UML model is the source of
information that is embedded into the business context document. This means that
the business context can be considered to be a rich view of the UML model. We
believe that this is the right approach.

As well as these literate modelling specific tags, you also need tags for things like
paragraphs, tables etc. A commonly used XML schema for documents is the Doc-
Book schema (www.docbook.org). This provides an excellent base for the literate
modelling extensions.

This XML representation would allow a degree of automation in the creation of lit-
erate models. It would also allow for consistency checking between the business
context documents and the UML models.

Another exciting possibility is that the literate models themselves could provide the
user interfaces for the archetype automation technology that we describe in chapter
2. We may be doing some work on this in the near future.

2.14 Summary
Literate modelling has been very successful for us. It has improved the quality of
our UML models and our ability to communicate with stakeholders. We think it
will work well for you also. We encourage you to try it!

• Literate Modelling was invented by Jim Arlow (Clear View Training Limited),
Dr. Wolfgang Emmeric (University College London) and John Quinn (British
Airways) in 1998

• Similar to Literate Programming [Knuth1]
• Arose from our attempts to explain UML models to non-technical audi-
ences

• Issues with visual models
Business Archetypes and Patterns

Summary
• Valuable business information is encoded in a visual syntax only accessi-
ble to those “in the know”

• Comprehensibility - those who can understand the visual syntax
• Access ability - those who can use the CASE tool

• Trivialisation of business requirements
• Important requirements often become invisible when expressed in
UML

• Lost amongst a host of visually similar modelling elements
• The business context that generated the requirements is missing from
UML models
• Analyst/designers may not remember the business rationale for a
model they created only a short time ago

• Comprehensibility and access ability of UML models
• Comprehensibility - the ability to understand the business semantics of
the model
• Access ability - the ability to access the information contained in the
model

• Ability to understand UML
• Ability to work the CASE tool

• See figure Figure 2.1
• The problem of comprehensibility

• As diagrams become more technical (use cases to statecharts) the
non-technical group are left behind

• Traceability
• Designers and programmers may have little understanding of the
business
• Trivialisation (see above)

• Literate modelling
• Extend your UML model with a business context document that captures
the missing business context of the model

• Explain the rationale behind the UML model in business language
• Highlight important business requirements
• Map business requirements to specific features of the UML model
Business Archetypes and Patterns 112

Literate modelling

113
• Explain how the business context shaped the model
• Literate models are more valuable than UML models alone

• High comprehensibility
• High access ability

• The business context document
• Discusses the background, general principles and concepts, essential
requirements and forces that shape a UML model
• Written from the business perspective
• Structured around the things in the business

• Things and their relationships change quite slowly (especially arche-
types!)
• Things naturally from cohesive clusters - ideal for structuring the
business context document
• Things support processes

• How to create a buisness context document
• Identify a suitable focus (a cluster of things)
• Name the document after the central thing
• Structure

• Introduction
• Compliance to standards
• Overview
• Thing

• Narrative
• Model fragment

• ...
• Summary

• Use informal diagrams where they enhance the text
• Never substitute an informal diagram for a UML diagram

• Synonyms - two or more words mean the same thing
• Homonyms - the same word has two or more different meanings
• Always choose a single term and define it
Business Archetypes and Patterns

Summary
• Deal with synonyms and hominess using a glossary
• UML packages may provide the organising principle for the business context

document
• A single package or cluster of closely related packages may provide the
basis for a business context document
• Interpackage dependencies become dependencies between business con-
text documents

• When a client document refers to a thing in a server document
• Always include the definition of the thing in the client document
• Always reference the server document
• Don’t make your readers look things up!

• If the business context document implies a different structure than the
UML model, go back to the business to resolve this

• Business context document conventions
• Always use names of model elements in the narrative
• Write model element names in a special font
• Use plural where necessary e.g. Locale may become Locales

• Use ‘s where appropriate e.g. Country’s

• Check the narrative reads well even if the UML diagrams are covered up
• Readability

• Don’t use passive voice
• Tell a story!
• Style should be lively, involving, direct, provocative, precise, concise
and (if possible) humorous.

• Use concrete examples
• Always give your reader real-world examples that are meaningful to
them
• Use simple examples to get an idea across
• Use complex examples

• Show that your model really does support the business require-
ments
• Stress-test your model
Business Archetypes and Patterns 114

Literate modelling

115
• Work business partners into the examples
• Precision and correctness

• A literate model will be more precise and correct than a UML model
alone
• A literate model will be more precise and correct than documents
about the business area alone

• The future of literate modeling
• An XML schema for literate modeling.

• <modelElement pathName = nameOfElement, identifier = identifierOfEle-
ment>someText</modelElement>

• <modelElementDefinition pathName = nameOfElement, identifier = identifier-
OfElement/>

• <umlDiagram pathName = nameOfDiagram, identifier = identifierOfDiagram/
>

• Using the literate model as a user interface for archetype automation.
Business Archetypes and Patterns

	CHAPTER 2 Literate modelling
	2.1 Acknowledgements
	2.2 Introduction
	2.3 Comprehensibility and accessibility of UML models
	TABLE 1.
	2.3.1 Use case specifications
	2.3.2 Use case diagrams
	2.3.3 Activity diagrams
	2.3.4 Sequence diagrams
	2.3.5 Collaboration diagrams
	2.3.6 Class diagrams
	2.3.7 Statecharts

	2.4 The problem of comprehensibility
	2.5 The trivialisation of business requirements in visual modelling
	2.6 Literate modelling
	2.7 The business context document
	2.8 Clusters of things
	2.9 Business context document conventions
	2.10 Readability
	2.11 Use concrete examples
	2.12 Precision and correctness
	2.13 The future of literate modeling
	2.14 Summary

